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On Some Properties of Kinetic and Hydrodynamic
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We investigate a Boltzmann equation for inelastic scattering in which the
relative velocity in the collision frequency is approximated by the thermal speed.
The inelasticity is given by a velocity variable restitution coefficient. This equa-
tion is the analog to the Boltzmann classical equation for Maxwellian molecules.
We study the homogeneous regime using Fourier analysis methods. We analyze
the existence and uniqueness questions, the linearized operator around the
Dirac delta function, self-similar solutions and moment equations. We clarify
the conditions under which self-similar solutions describe the asymptotic
behavior of the homogeneous equation. We obtain formally a hydrodynamic
description for near elastic particles under the assumption of constant and
variable restitution coefficient. We describe the linear long-wave stability�
instability for homogeneous cooling states.

KEY WORDS: Homogeneous inelastic Boltzmann; large-time asymptotics;
self-similar solutions; hydrodynamics.

1. INTRODUCTION

The aim of this paper is to clarify some questions concerning principal
properties of kinetic equations for granular media. We use the well-known
and wide-accepted model given by the generalized Boltzmann�Enskog
equation for a dense gas of inelastic spheres as the basis of our study. For
the sake of reader's convenience we describe a brief scheme of its derivation
in Section 2.
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We use a velocity dependent restitution coefficient which characterizes
the inelasticity of collisions. The constant restitution coefficient case leads
to well-known unrealistic physical states in some applications. In fact, the
restitution coefficient may depend on relative velocity in such a way that
collisions with small relative velocity are close to be elastic. This type of
restitution coefficient is more realistic and it has been used in molecular
dynamics simulation of oscillated granular media.(5) Besides, it has been
proved that a dynamical model with the constant coefficient leads to
inelastic collapse.(2, 11) On the other hand, the collapse does not occur for
variable restitution coefficient with appropriate behavior for small values of
relative speed.(14)

Dealing with dense gases of granular media we always assume
(directly or indirectly) that the mean free path is relatively small since we
are outside of the Boltzmann�Grad limit. This implies a transition to a
certain hydrodynamic regime. At the formal (physical) level of description
this transition can be made by different ways (Grad method, (16) Chapman�
Enskog expansion, (15) etc).

However, in all cases, we need to answer the following questions:
(a) how to describe large-time asymptotics of solutions to the spatially
homogeneous equation; and (b) what can be said about main properties of
corresponding limit equations (hydrodynamics). Our work can be con-
sidered as an attempt to partly clarify these questions, especially in the case
of variable restitution coefficient. In particular, Sections 3�6 are devoted to
the spatially homogeneous problem and Section 7�8 to some stability�
instability properties of the limit dissipative Euler equations.

An extensive survey of physical literature can be found in ref. 13. The
existence theory for the inelastic hard-sphere Boltzmann�Enskog equation
was analyzed in ref. 12. A detail theory of one-dimensional granular flows
was recently developed in refs. 2�4. These and other cited publications are
only a small part of a huge literature related to flows of inelastic granular
materials. We refer to ref. 9 and the references therein for a survey of
granular flow kinetic theory.

A key idea of our approach is to use a simplified (pseudo-maxwellian)
version of the Boltzmann�Enskog equation. Physical reasons for such a
simplification are described in detail at the end of Section 2. This sim-
plification is especially effective in the spatially homogeneous case. In order
to analyze this spatially homogeneous equation we use the Fourier trans-
form method applied in the Boltzmann equation for Maxwellian molecules
by one of the authors.(6, 7)

Here, the main difference is the absence of conservation of energy at
the level of the collision mechanism, and thus, at the level of the Boltzmann
equation. In fact, a Maxwellian distribution can not be a solution of the
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inelastic Boltzmann equation. However, the Dirac delta distribution is
obviously in the kernel of the collision operator. Therefore, with the
Fourier method, we can describe the spectrum of the linearized homoge-
neous equation around the Dirac delta distribution.

In addition, we clarify the existence of self-similar solutions for this
model. This type of solutions have been considered before for the inelastic
hard-sphere Boltzmann equation.(8, 15) They have been called homogeneous
cooling states. The nearly elastic case was studied in ref. 15. In the present
model we state and prove the precise conditions under which these self-
similar solutions exist, and then describe the large-time behavior of the
system. These results are accomplished using eigenfunction expansion of
the solutions in the Fourier transformed equation. Finally, we study the
moment equations for this system. For constant fixed restitution coefficient
the large-time asymptotics of the system are given by the Dirac delta dis-
tribution. We analyze two cases under which self-similar solutions are
asymptotically relevant. These cases are: (a) nearly elastic particles with
constant or variable restitution coefficient and (b) small temperature. In
both cases, the self-similar solution is near a Maxwellian distribution for a
specific asymptotics involving restitution coefficient and time (see Section 6.1).
Therefore, we can make a formal transition to hydrodynamics in the
spatially inhomogeneous simplified equation. The resulting hydrodynamic
description, valid for (a) and (b), is the usual Euler equations for gas-
dynamics with a dissipative term in the temperature equation due to the
inelasticity. Finally, we study the stability�instability of the homogeneous
cooling state in the hydrodynamic description. In fact, in the constant
restitution coefficient case the homogeneous cooling state is unstable. In
the variable case, we find that the system is linearly stable.

2. PSEUDO-MAXWELLIAN MODEL FOR DISSIPATIVE
HARD SPHERES

In this section we introduce the basic model we will treat in this paper.
Our starting point is the Boltzmann�Enskog equation for inelastic hard
spheres neglecting rotational degrees of freedom. For the sake of complete-
ness and reader's convenience we include a short review of this model.
A wider discussion can be found in ref. 9 and the references therein.

Assume that we are studying the dynamics of N perfect spheres of
diameter _>0 such that they perform inelastic collisions. If (x, v) and
(x&_n, w) are the states of two particles before a collision, where n # S2

is the unit vector along the center of both spheres, the postcollisional
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velocities are found assuming that the total momentum is preserved but we
loose some part of the normal relative velocity, that is,

n } (v$&w$)=&e((v&w) } n)

where 0<e�1 is called the restitution coefficient. Using both information
we construct the postcollisional velocities as

v$=
1
2

(v+w)+
u$
2

(2.1)

w$=
1
2

(v+w)&
u$
2

(2.2)

where u$=u&(1+e)(u } n) n, u=v&w and u$=v$&w$. Let us denote by
v* and w* the precollisional velocities corresponding to v and w. Let us
remark that the coefficient of restitution can be a function of the normal
relative velocity |(v&w) } n|.

Following the standard procedures of kinetic theory, (9, 10) we deduce
the Boltzmann�Enskog equation for inelastic hard spheres

�f
�t

+(v } {x) f =_2QB( f, f ) (2.3)

where the collision operator is given by

QB( f, f )=|
R 3 |S 2

((v&w) } n)+ _1
e

JG(x, x+_n | \) f (t, x, v*)

_ f (t, x+_n, w*)&G(x, x&_n | \)

_ f (t, x, v) f (t, x&_n, w)& dn dw

and

\(t, x)=|
R 3

f (t, x, v) dv

Here, J is the Jacobian of the transformation (v, w) into (v*, w*) and G is
the statistical correlation function between the particles. We refer to ref. 9
for a deeper discussion on the meaning of the function G�1. Let us only
remark the function G is related to corrections to the molecular chaos
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hypothesis for dense gases and its value is 1 for a rarefied gas, i.e., the joint
probability density of two particles f (2) is given by

f (2)(t, x, v, y, w)=G(x, y | \(t, x)) f (t, x, v) f (t, y, w) (2.4)

We can write QB( f, f ) in a more convenient way. Since v$, w$ can be
written as

v$=
1
2

(w+v)+
1+e

4
(u&2n(u } n))+

1&e
4

u

w$=
1
2

(w+v)&
1+e

4
(u&2n(u } n))&

1&e
4

u

then we can use the identity

|
S 2

(u } n)+ .(n(u } n)) dn=
|u|
4 |

S 2
. \u&|u| n

2 + dn

for any function . to write QB( f, f ) as

QB( f, f )=
1
4 |

R3 |S 2
[|v*&w*| JG(x, x+_| | \)

_ f (t, x, v*) f (t, x+_|, w*)

&|v&w| G(x, x&_| | \) f (t, x, v) f (t, x&_|, w)] dn dw

where

|=
u&|u| n

|u&|u| n|
=

m&n
|m&n|

with m=
u

|u|

Here, v*, w* are the precollisional velocities associated to the collision
mechanism

v$=
1
2

(v+w)+
1&e

4
(v&w)+

1+e
4

|v&w| n (2.5)

w$=
1
2

(v+w)&
1&e

4
(v&w)&

1+e
4

|v&w| n (2.6)
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In case of non-constant restitution coefficient e=e(u } n) in the initial
equation, the coefficient reads now as

e=e \ |u&|u| n|
2 +=e \ |u| �1&m } n

2 +
The equation (2.3) is often considered as the basic kinetic equation for

granular media. On the other hand, this equation is a fairly rough mathe-
matical model of a real physical process. Even without mentioning rota-
tional effects and deviations from spherical shape of particles, one can
realize that the formula (2.4) is very rough outside of the Boltzmann�Grad
limit. This formula certainly does not account for non-Markovian effects of
repeating collisions. Moreover, the model of inelastic scattering based on
empirical restitution coefficient is also a very rough approximation. Thus,
we have the equation (2.3) which is (a) a very rough approximation from
physical point of view and (b) quite complicated equation from mathemati-
cal point of view. These obvious considerations lead to the idea of using a
simplified version of Eq. (2.3). In particular, the following simplification
seems reasonable.

Consider u(t, x) and %(t, x) the bulk velocity and temperature defined
by f, that is,

\(t, x) u(t, x)=|
R 3

vf dv

and

3\(t, x) %(t, x)=|
R 3

|v&u(t, x)| 2 f dv

Therefore, let us take the approximation

|v&w| &S - %(t, x) (2.7)

with certain constant S for the precollisional velocities. The constant can be
chosen in such a way that the Euler equations (Section 7) for the model are
identical to the Euler equations for the initial kinetic equation (2.3).
Similarly, we assume now that e=e(%)=e~ (- % ), with an appropriate
choice of the function e~ (- % ), and as a consequence J=1�e.

This assumption on the collision frequency as a function of the kinetic
temperature appear in the engineering literature on fluidization models of
granular media.(13)
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Therefore our pseudo-Maxwellian model is given by

�f
�t

+(v } {x) f =Q( f, f ) (2.8)

where

Q( f, f )=A(t, x) |
R3 |S 2 _1

e
G(x, x+_| | \) f (t, x, v*) f (t, x+_|, w*)

&G(x, x&_| | \) f (t, x, v) f (t, x&_|, w)& dn dw

and

A(t, x)=
_2

4
S - %(t, x)

with the collision mechanism given by (2.5)�(2.6). The collision operator
can be written as

Q( f, f )=4A(t, x) |
R 3 |S 2

((v&w) } n)+

__ 1
e2

G(x, x+_| | \)
|v*&w*|

f (t, x, v*) f (t, x+_|, w*)

&
G(x, x&_| | \)

|v&w|
f (t, x, v) f (t, x&_|, w)& dn dw

with the collision mechanism given by (2.1)�(2.2).
In this work we will study in detail the homogeneous case of Eq. (2.8).

We call (2.8) a pseudo-maxwellian model because of the analogy to the
Maxwellian models in the classical elastic case in which the cross-section
does not depend on the relative velocity. From the point of view of the
applications this approximation is as rough as the equation (2.3), so we
prefer (2.8) because it is a more simplified model.

The homogeneous equation corresponding to (2.8) is

�f
�t

=B(t) Q( f, f ) (2.9)
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where

Q( f, f )=
1

4? |
R3 |S 2

[ f (t, v*) f (t, w*)
1
e

& f (t, v) f (t, w)] dn dw (2.10)

and

B(t)=?S_2
- %(t) G(\)=B - %(t) G(\)=B� - %(t) (2.11)

The corresponding weak form of Q( f, f ) is given by the integral

(Q, �)=
1

4? |
R 3_R 3_S2

f (t, w) f (t, v)[�(v$)&�(v)] dv dw dn

where � # C �
0 (R3) and v$ is computed by

v$=
1
2

(v+w)+
1&e

4
(v&w)+

1+e
4

|v&w| n (2.12)

and e=e(%(t)). In the next section, we will study the initial value problem
for (2.9).

3. INITIAL VALUE PROBLEM

Let us consider Eq. (2.9) with the collision term given by (2.10)�(2.11)
and v$ given by (2.12). First, we rescale in time by defining

d{=B� - %(t) dt (3.1)

then

{=B� |
{

0
- %({~ ) d{~

Thus, we obtain the equation

�f
�{

=Q( f, f ) (3.2)

where Q( f, f ) acts in weak form as

(Q, �)=
1

4? |
R 3_R3_S2

f (v) f (w)[�(v$)&�(v)] dv dw dn (3.3)
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with v$ given by (2.12) and e=e(%). Let us remark that Eq. (3.3) contains
the gain and the loss term together. From now on, we will denote again by
t the time variable, and since

| Q( f, f ) dv=| vQ( f, f ) dv=0

then it is assumed, without loss of generality, that

|
R 3

f (t, v) dv=1, |
R3

vf (t, v) dv=0

for any t�0. The temperature %(t) is defined as usual by

%(t)=
1
3 |

R3
|v|2 f (t, v) dv

We will denote by f0 the initial data for Eq. (3.2).
A detailed analytic theory of the classical elastic (e#1) case was

developed in refs. 6 and 7. We use here the same approach based in Fourier
transform method. For the sake of simplicity, we will skip the time depen-
dence of the functions in some of the equations below. Let us introduce the
characteristic function

.(t, k)=|
R 3

f (t, v) exp(&i(k } v)) dv, k # R3

then, using (3.2)�(3.3) we obtain

�.
�t

=(Q, exp(&i(k } v)))=L(., .)

where

L(., .)=
1

4? |
R 3_R 3

f (v) f (w)

_exp {&i(k } U )&i
1&e

4
(k } u)= F(k, u) dv dw

U= 1
2 (v+w), u=(v&w) and

F(k, u)=|
S2 _exp {&

1+e
4

i(k } n) |u|=&exp {&
1+e

4
i(k } u)=& dn (3.4)
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It is easy to see that the product (k } |u| n) can be replaced by (u } |k| n) in
the first term of (3.4) because the function F(k, u) is isotropic and only
depends on the values of |k|, |u| and k } u (see refs. 6 and 7). Proceeding
with the replacement and interchanging the order of integration we obtain

L(., .)=L+(., .)&L&(., .)

where

L&(., .)=.(t, 0) .(t, k)

and

L+(., .)=
1

4? |
S2_R 3_R 3

f (v) f (w) exp[H(k, v, w)] dv dw dn

with

H(k, v, w)=&iv \k
2

+
1&e

4
k+

1+e
4

|k| n+
+iw \&

k
2

+
1&e

4
k+

1+e
4

|k| n+
Therefore, the Fourier transformed gain operator is given by

L+(., .)=
1

4? |
S 2

. \3&e
4

k+
1+e

4
|k| n+ . \1+e

4
(k&|k| n)+ dn

In particular, we have proved the following lemma.

Lemma 3.1. The Fourier transformed equation corresponding to
(3.2) is given by

�.
�t

=
1

4? |
S2

[.(t, k+) .(t, k&)&.(t, 0) .(t, k)] dn (3.5)

with

k&=
1+e

4
(k&|k| n), k+=k&k&, .(t, 0)=1,

[{k.](t, 0)=0, e=e(%(t)), %(t)=&
1
3

[2k.](t, 0)
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and

.(0, k)=.0(k)=|
R3

exp(&i(k } v)) f0(v) dv

Remark 3.2. Assuming that f (v)�A exp(&: |v|2), the complex
Fourier variable k=ik� (two-side Laplace transform) can be used in order
to obtain the same equation for the positive function .~ (k� )=.(ik� ).

We see from Lemma 3.1 that our simplification of the model leads to
a very simplified homogeneous equation that can be completely described
in Fourier transform formulation. The rest of this section is devoted to
review, very quickly, the existence and uniqueness theory for the Fourier
transformed Eq. (3.5).

The existence theorems for the classical elastic case (e=1) were
proved by Morgenstern, Wild and others (see ref. 6 and references therein).
These results can be easily generalized to the inelastic case. Consider a
change in time variable of the type

{=1&exp(&t), .(t, k)=exp(&t) 8({, k)

then (3.5) leads to

�8
�{

=L+(8, 8)

with 8(k, 0)=.0(k). Solutions in power series expansion of the type

8({, k)= :
�

n=0

8n(k) {n

are given by a simple recurrent sequence of equalities

80=.0

(3.6)
8n+1=

1
n+1

:
n

k=0

L+(8k , 8n&k), n�0

Noting that |.0|�1, we obtain |8n |�1 for any n�0. Then the series (3.6)
converges uniformly on { # [0, 1). This series is usually called the Wild's
sum in the Fourier representation.

Using the same ideas as in ref. 6, Section 13, we can obtain the follow-
ing result. Let us define f (t, v) to be a solution of (3.2) if its Fourier trans-
form is a characteristic function for any t�0 and solves (3.5).
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Proposition 3.3. Problem (3.5) with f0 # L1(R3)

f0�0, |
R3

f0(v) dv=1 and |
R 3

|v|2 f0(v) dv=3%0<�

has a unique classical solution .(t, k) for t>0. Moreover, there exists a
unique function f (t, v)�0 such that

f # L�(0, �; L1(R3)) and .(t, v)=|
R 3

f (t, v) exp(&i(k } v)) dv

Therefore, the function f (t, v) defines a unique solution of (3.2) satisfying
the initial condition f (0, v)= f0(v).

Remark 3.4. The uniqueness is related to the explicit form that
we have for .(t, k) in terms of a series. More details can be found in
Section 13 of ref. 6.

4. LINEARIZED EQUATION

First of all, let us write L+(., .) in a different way. Equation (3.5)
can be written as

L+(., .)=
1

4? |
S 2

F \ |k| n&k
2 + dn

where

F(u)=.(&zu) .(k+zu) and z=
1+e

2

The identity

1
4? |

S2
F \ |k| n&k

2 + dn=
1

2? |k| |R 3
$(2! } k+|!|2) F \!

2+ d! (4.1)

can be verified by completing the square in the delta Dirac function, taking
polar coordinates !=rn and performing the change of variables r2=s.
Meanwhile, applying directly polar coordinates !=rn and changing
variables r(r+2k } n)=s+2k } n we have
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|
R 3

$(2! } k+|!| 2) F \!
2+ d!=|

S 2 |
�

0
$(r(r+2k } n)) F \rn

2 + r2 dr dn

=2 |
S 2

|(k } n)&| F(&(k } n) n) dn

=|
S 2

|k } n| F(&(k } n) n) dn

Therefore,

1
4? |

S2
F \ |k| n&k

2 + dn=
1

2? |k| |S 2
|k } n| F(&(k } n) n) dn

Using this formula in (3.5), we have proved the following identity.

Lemma 4.1. Equation (3.5) can be written as

�.
�t

=
1

2? |
S2

[.(z(k } n) n) .(k&z(k } n) n)&.(0) .(k)]
|k } n|

|k|
dn

=L(., .) (4.2)

where z=(1+e)�2.

Previous formula for L(., .) implies the following property of the
Fourier transformed operator,

L(exp(i(k } u)), exp(i(k } u)))=0 for any u # R3

L(exp(i(k } u)) ., exp(i(k } u)) .)=exp(i(k } u)) L(., .) for any u # R3

(4.3)

Next, let us study Eq. (4.2) near the fixed point .
*

=1. Because of
property (4.3) the behavior of the solutions near any other exp(i(k } u)) for
any u # R3, |u|{0, is quite similar to the case |u|=0. In fact, (4.3) is the
equivalent of the translational invariance of Eq. (2.9). Let us remark that
linearizing the Fourier transformed equation around the state .

*
=1 is like

linearizing our original equation around the Delta Dirac distribution.
Thus, let us consider perturbations of .

*
=1 in Eq. (4.2) of the form

.(t, k)=1+�(t, k); &�&<<1
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with & }& is the continuous norm. We obtain the linearized equation

��
�t

=L2 �=
1

2? |
S2

|k } n|
|k|

[�(z(k } n) n)+�(k&z(k } n) n)&�(0)&�(k)]

We can prove the following result.

Theorem 4.2. Polynomial eigenfunctions and corresponding eigen-
values of L2 are given by

L2.nlm(k)=&*nl.nlm(k)

{.nlm(k)=|k| 2n+l Y lm \ k
|k|+

n=0, 1,...; l=0, 1,...; m=&l,..., l

where Ylm(u) are the spherical harmonics with

*nl =1+$n0$ l 0&2 {z2n+l |
1

0
:2n+l+1Pl (:) d:

+
1

z(2&z) |
1

1&z
:2n+l+1Pl \1&z+:2

(2&z): + d:=
where Pl are the Legendre polynomials. Moreover, *nl>0 except two
values

*00=*01=0 (4.3)

In particular,

*n=*n0=1+$n0&
1

n+1 _z2n+
1&(1&z)2(n+1)

1&(1&z)2 &
=1+$n0&

1
n+1 _z2n+ :

n

k=0

(1&z)2k&
We refer to refs. 6 and 7 for all the details of the derivation since the

proof is identical with minor changes. Also we refer to ref. 17 for properties
of the spherical harmonics.
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Remark 4.3. As a consequence, when e is constant, 0<e<1 the
spectrum of the linearized operator consists of two zero eigenvalues (4.4),
they corresponds to the two conservation laws (mass and momentum), and
a sequence of isolate points on the negative part of the real axis. It is clear
that *nl � 1 as (2n+l ) � �, and in particular we have *n � 1 as n � �.
Note that the spectrum is given by the values &*nl .

In particular,

*n1=1&
(1&a)2n+1

n+2
&

1
1+a {

a
n+1

1&a2(n+1)

1&a2 +
1

n+2
1&a2(n+2)

1&a2 =
n�0, where a=1&z. Thus, *01=0 for any value 0�a�1�2. Finally, we
recover in the case z=1 well-known formula for the eigenvalues of the
linearized classical Boltzmann equation for Maxwell-molecules given by

*nl=1+$n0$l0&4 |
1

0
:2n+l+1Pl (:) d:

The main difference from the elastic case (z=1) is that we obtain a small
eigenvalue

*10=z(1&z)

as a result of perturbation of the value *10=0 for z=1, that is, the elastic
case.

5. ISOTROPIC EQUATION AND ITS SELF-SIMILAR
SOLUTIONS

Let us come back for a while to the original Boltzmann equation (2.9).
We can try to look for solutions of self-similar type, that is,

f (t, v)=\%(t)&3�2 g(%(t)&1�2 (v&u)) (5.1)

where \, u, %(t) are the mass, momentum and temperature of f. These states
are called homogeneous cooling states.

Therefore, g must satisfy

|
R 3

g dw=1; |
R 3

wg dw=0; |
R 3

|w|2 g dw=3
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Computing the derivative of %(t) and taking into account (3.3) for
�=|v&u| 2 we find after some computations, that

d
dt |

R 3
|v&u| 2 f dv=3\%$(t)=&3B�

1&e2

4
\2%(t)3�2

Simplifying we deduce

%$(t)=&
1&e2

4
\B� %(t)3�2 (5.2)

Substituting (5.1) into (2.9) we deduce the following equation for g:

& 3
2 \%$(t) %(t)&5�2 divw(wg)=\2B� %(t)&1 Q� (g, g) (5.3)

where

Q� (g, g)=|
R3 _ 1

e(%(t))
g(w*) g(v*)& g(v) g(w)& dw

Substituting (5.2) into (5.3) and simplifying we have

Q� (g, g)& 3
8 (1&e2) divw(wg)=0 (5.4)

Since %(t) depends on t the only possibility for (2.9) to have a solution of
the form (5.1) is that e does not depend on %(t), therefore e constant. This
point clarifies some discussion in ref. 15. When e is constant we can have
solutions of the form (5.1) since in (5.4) we have a closed equation for g
and then we solve the equation for %(t).

The rest of this section is devoted to prove rigorously that these states
exist and to study conditions for their existence.

First, let us consider the equation for isotropic solutions, that is, solu-
tions of the form .(t, ') where '=|k|2�2. We are going to have

|k& |2=z2 1&`
2

|k|2, `=
k } n
|k|

, z=
1+e

2
,

k } k&=
z
2

(1&`) |k|2 and |k+| 2=|k| 2 _1&
1&`

2
z(2&z)&
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Now, we can evaluate Eq. (3.5) in spherical coordinates with polar axis
directed along k and we obtain

�
�t

. \ |k|2

2 +=
1
2 |

1

&1 {.(z2 |k| 2

2
1&`

2 + . \ |k|2

2 \1&;
1&`

2 ++
&.(0) . \ |k|2

2 += d`

where ;=z(2&z). Fixing '=|k|2�2 and s=(1&`)�2 we have

�.
�t

=|
1

0
[.(z2s') .((1&;s) ')&.(0) .(')] ds (5.5)

where ;=1&[(1&e)2�4]. Now, the temperature %(t) is given by

%(t)=&.$'(t, ')| '=0

provided .(t, 0)=1.
So if ;= constan, then Eq. (5.5) is invariant under dilations ' � :'

with : # R+. Therefore, similar to the elastic case ;=1, (6, 7) we can prove
that the Eq. (5.5) admits self-similar solutions

.(t, ')=.~ (exp(&+t) ')

with + # R to be chosen and where .~ satisfies the equation

+'
d.~
d'

+|
1

0
[.~ (z2s') .~ ((1&;s) ')&.~ (0) .~ (')] ds=0

Looking for series solutions of the form

.~ (')= :
�

n=0

(&1)n

n!
.~ n'n; .~ 0=1 (5.6)

we obtain a recurrent formula for .~ n , n�1;

.~ n[&+n+*n]= :
n&1

k=1

H(k, n&k) .~ k.~ n&k
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where the right-hand side is 0 for n=1, and

*n=*n0=|
1

0
[1&z2nsn&(1&;s)n] ds; n�1

(5.7)

H(k, n&k)=z2k \n
k+ |

1

0
sk(1&;s)n&k ds, 1�k�n&1

As we shall see later, the only interesting case for possible applications is
the case +=*1=z(1&z).

Since we can choose an arbitrary value .~ 1=%0>0, then .~ n=%n
0 un

where un is defined recursively by

un=(*n&n*1)&1 :
n&1

k=1

H(k, n&k) ukun&k , n�2
(5.8)

u1=1

The convergence of the Taylor series (5.6) on the whole axis ' # R can be
proved similarly to ref. 6 provided *n{n*1 for all n�2. Let us remark that

;=z(2&z)=z+(1&z) z�z>z2

and thus,

:
n&1

k=1

H(k, n&k)=|
1

0
:

n&1

k=1
\n

k+ z2ksk(1&;s)n&k ds

�|
1

0
[1&(;s)n&(1&;s)n] ds<*n

Therefore, taking into account that *n � 1 as n � � (Remark 4.3) and
considering

b=max
n�2

*n

|*n&n*1|

one can easily prove by induction that un satisfies |un|�b, n�1 and then
we have the convergence. We have proved the following result

Theorem 5.1. The Eq. (3.5) has the self similar solution

.(t, k)=.~ \ |k|2

2
%(t)+ ; %(t)=%(0) exp(&+t)
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where +=(1&e2)�4=z(1&z)=*1 and u0=u1=1

.~ (')= :
�

n=0

(&1)n

n!
un'n

with un given by (5.8), provided *n{n*1 for all n�2.

As a consequence we obtain the following corollary for Eq. (2.9) by
changing to the original time variable (3.1).

Corollary 5.2. The Eq. (2.9) with constant e has the self-similar
solution

f (t, v)=\%(t)&3�2 g(%(t)&1�2 (v&u))

where \, u are the density and momentum and %(t) is the temperature that
verifies

%$(t)=&
1&e2

4
\B� %(t)3�2

provided n*1{*n for all n�2.

Remark 5.3. Theorem 5.1 is not valid for those values of 0<e<1
such that *n(e)=n[(1&e2)�4] for some n�2. This condition may be
violated for a numerable number of values of e, [en] with [en] � 1 as
n � �. This comes from the explicit formula for *n .

Remark 5.4. The coefficients un have the same sign as the moments
( |v| 2n) of the distribution function (see next section). It follows from (5.8)
that for any 0<e<1 there exists a number N=N(e) such that uN<0.
Therefore the self-similar solution ``distribution function'' can not be non-
negative. Anyway as we shall see in next section this self-similar solution
controls the asymptotic behavior in some cases.

6. GENERAL SOLUTION AND MOMENT EQUATIONS

We recall here a connection between the moments of f (t, v) and the
derivatives of .(t, k). For simplicity, we consider only isotropic functions
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and by now we omit the dependence on time. Since .=.('), '=|k|2�2
and f = f ( |v| ) then

.(')=4? |
�

0
f (r)

sin - ' r

- ' r
r2 dr

Then, we formally obtain

. \ |k| 2

2 += :
�

n=0

(&1)n

n! \ |k| 2

2 +
n

.n= :
�

n=0

(&1)n

(2n+1)!
mn |k|2n

where mn is the n th moment of f and

.n=
n!

(2n+1)!
4? |

�

0
r2(1+n) f (r) dr

Thus, we have

.(')= :
�

n=0

(&1)n

n!
.n'n; .n=(&1)n .n)(0)

where .n)(0) is the n th derivative of . at 0 and finally

.n)(0)=
(&1)n 2nn!
(2n+1)!

mn , n�0 (6.1)

Once we have seen the relation between the derivatives at 0 of . and
the moments of f, let us obtain the moment equations. We consider the
Eq. (5.5) and look for solutions in the form

.(t, ')= :
�

n=0

(&1)n

n!
.n(t) 'n

Assuming that

.(0, ')=.0(')= :
�

n=0

(&1)n

n!
.n(0) 'n
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By substituting into (5.5) we obtain the following recursive definition for
.n(t)

.0=1,
d.1

dt
+*1 .1=0,

d.n

dt
+*n .n= :

n&1

k=0

H(k, n&k) .k.n&k , n�2

where the notation in (5.7) is used. Thus, using (6.1) we have

.1(t)=.1(0) exp(&41(t))=%(t), .1(0)=%(0),

.n(t)=.n(0) exp(&4n(t))+ :
n&1

k=1
|

t

0
.k({) .n&k({) (6.2)

_[H(k, n&k)]({) exp[&(4n(t)&4n({))] d{

where 4n(t) is given by

4n(t)=|
t

0
*n(e(%(s))) ds, n�1

Remember that our original time variable is different. But we will work
with this time scale and we will write the final results in the original time
(3.1).

To make formula (6.2) explicit we need to find %(t). %(t) solves

%$(t)=&*1%=&
1&e2(%)

4
%, %(0)=%0

We have two cases.

6.1. Constant Restitution Coefficient

In this case, we obtain [*n] are constants, and then .1=%0_
exp(&*1 t). For .2(t) we find

.2(t)=_.2(0)&
%2

0

*2&2*1& exp(&*2 t)+
%(t)2

*2&2*1
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Remark that the second term is a contribution of the similarity solution
(5.7), Theorem 5.1. The general formula for .n(t) looks like

.n(t)=An exp(&n*1 t)+ } } } +Bn exp(&*nt) (6.3)

The terms in the expression in dots are linear combination of functions of
the type

exp {&t :
n

k=1

rk *k= with :
n

k=1

krk=n and rk�0

Since *n>0 we deduce that .n(t) � 0 as t � � for any n�1. As a first
consequence, we obtain that for fixed constant restitution coefficient e the
asymptotic behavior t � � is given by .0=1 and in terms of the distribu-
tion function by the delta Dirac centered at zero. In terms of the model this
is correct because we do not have any external energy source to compen-
sate the loss of energy through collisions. Therefore, for e fixed we have

f (t, v) � $o(v) as t � �

in the weak topology of measures.
The self-similar solution includes only the first term in (6.3). These

terms dominate as t � � if and only if

*1<
1
n

min { :
n

k=1

rk *k ; :
n

k=1

krk=n and rk�0= (6.4)

provided there are no resonances, i.e.,

*m{ :
m&1

k=1

rk *k with :
m&1

k=1

krk=m and rk�0

Otherwise we obtain additional terms in (6.3). The resonances are absent
in the elastic case e=1 (ref. 6) and they appear only for special values of e.

Finally, let us clarify that the self-similar solution can dominate in the
limit t � � when *1 � 0 (e � 1) due to (6.4). So, finally in the asymptotics
t � �, *1 � 0 we obtain

.n(t)=%(t)n [1+O(*1)+O(exp[&(*n&n*1)])]

and %(t)=%0 exp(&*1 t).
Hence, the self-similar solution in Corollary 5.2 describes the large

time asymptotics of .n(t) only if *n>n*1 . This condition is satisfied for
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large n only if *1<<*n . In such a case e is close to 1 and then the self-
similar solution is close to the Maxwellian distribution with accuracy
O(*1). Therefore the leading asymptotic term of .(t, x) reads as

.(t, x)&exp(&x%(t)); %(t)=%0 exp(&*1 t)

as *1 � 0, t � �, *1 t=constant.
We can now return to the initial time scale (3.1) and we have that

d%
dt

=&*1%

corresponds to

d%
dt

=&B�
1&e2

4
%(t)3�2

and thus,

%(t)=
%0

(1+B� [(1&e2)�8] - %0 t)2
, t�0

and

.(t, k)&exp \&
|k|2

2
%(t)+ as t � �, e � 1, (1&e2) t=constant

or equivalently

f (t, v)& (2?%(t))&3�2 exp \&
|v|2

2%(t)+
as t � �, e � 1, (1&e2) t=constant.

6.2. Non-Constant Restitution Coefficient

Let us now assume that e(%) and that the behavior of e(%) for small
energy collisions is more elastic. Consider that e(%) is a decreasing con-
tinuous function of % that tends to some 0<e0<1 as % � � and that
e(0)=1. We will assume that

lim
% � 0

1&e(%)
C%:�2 =1 (6.5)
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with 0<:<1. If we compute the equation for %(t) we obtain

d%
dt

=&
1&e2(%)

4
B� %(t)3�2 (6.6)

therefore, at the first stage of relaxation %(t) decreases with the same rate
as other moments .n(t), n�2. The separation of time scales begins when
the temperature %(t) is so small that %(t)<<1 and (6.5) plays an important
role. Then, when %(t) is small, Eq. (6.6) reads as

d%
dt

&B� %(t) (:+3)�2

and hence

.(t, k)&exp \&
|k|2

2
%(t)+ for small %

Also, we have another possibility, that is, to have e0 � 1 as we did for
the constant case. Doing this we obtain that

.(t, k)&exp \&
|k|2

2
%(t)+ as t � �, e0 � 1

in such a way that t(1&e2
0)=constant, where

d%
dt

=&B�
1&e2(%)

4
%3�2=&B� h(%) %3�2

and

f (t, v)& (2?%(t))&3�2 exp \&
|v|2

2%(t)+
e0 � 1, t � �, (1&e2

0) t=constant.

7. EULER EQUATIONS. HYDRODYNAMIC LIMIT

On the basis of the previous considerations, we assume the Maxwellian
form of the distribution function, provided that the mean free path

==
1
B
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is small enough. Then, we obtain formally the following dissipative Euler
equations for density \(t, x), bulk velocity u(t, x) and temperature %(t, x)
as

�\
�t

+div(\u)=0

�u
�t

+(u } {) u+
1
\

{p=0 (7.1)

�%
�t

+(u } {) %+
2
3

% div u=&
1
=

1&e(%)2

4
\G� (\) %3�2

where p=\% and G� �1 related to the function G in (2.4). The equations
differ from the usual gas-dynamics Euler equations because of the dis-
sipative term in the equation for the temperature.

Remark 7.1. The system (7.1) is formally obtained from our
pseudo-maxwellian model Boltzmann�Enskog equation. It is clear however
that the Enskog shift does not play any role for = � 0. Moreover, exactly
the same dissipative Euler equations can be obtained directly from the
initial inelastic hard sphere kinetic Eq. (2.3) provided an appropriate value
of the constant S in our approximation (2.7) is chosen. Thus, the material
of this section relates not only to our model, but to the dissipative Euler
equations derived directly from the initial inelastic hard sphere model
without pseudo-maxwellian simplifications (2.3).

Remark 7.2. The Eqs. (7.1) with constant e were briefly considered
before by several authors (see refs. 1 and 8). Our aim is to stress some
qualitative differences between constant and temperature dependent restitu-
tion coefficients.

7.1. Constant Restitution Coefficient

If e is constant our Maxwellian form for the distribution function only
makes sense for (1&e2)�4 small. Rigorously speaking, the set of Eqs. (7.1)
represents formal asymptotics of the inelastic scattering Boltzmann equa-
tion as (1&e2)�4 � 0, = � 0 in such a way that (1&e2)�4==* remains con-
stant. In this case, the third equation reads as

�%
�t

+(u } {) %+
2
3

% div u=&*\G� (\) %3�2 (7.2)
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and the functions \, u and % are well-defined on the time interval [0, t*]
where the set of Eqs. (7.1) has a unique solution. This is the only case,
small inelasticity of the order of the Knudsen number, in which the
hydrodynamic approximation makes sense.

7.2. Non-Constant Restitution Coefficient

In this case *1(%)=(1&e(%)2)�4 tends to 0 as % � 0, is a continuous
increasing function, and tends to a constant (1&e2

o)�4 as % � �. In this
case, the hydrodynamic description is valid in two situations:

1. As in the constant case, take eo � 1, = � 0 in such a way that
(1&eo)�==* constant, then one obtain as third equation

�%
�t

+(u } {) %+
2
3

% div u=&*\G� (\) h(%) %3�2

where h(%)=1&e(%). For instance, taking h(%)=C%: near 0 and later on
constant.

2. The second possibility is for small temperature. We considered
that Eq. (6.6) makes sense only for % � 0, = � 0 in such a way that %�==*
constant. Then, we consider p=(1�=) \% and thus we obtain the set of
equations

�\
�t

+div(\u)=0

�u
�t

+(u } {) u+
=
\

{p=0 (7.3)

�p
�t

+(u } {) p+
5
3

p div u=&cG� (\) p2

for the case e(%)&1&c - % as % � 0. Thus, the formal asymptotics for
small temperature is given by conservation of mass and a Burgers-type
equation for the momentum with a small term proportional to the pressure.

8. SMALL PERTURBATIONS OF THE HOMOGENEOUS
SOLUTION

We consider the dissipative Euler system given by (7.1) with G� (\)=1.
We analyze, as in the previous section the constant and the non-constant
restitution coefficient separately.

768 Bobylev et al.



8.1. Constant Restitution Coefficient

Taking e constant, then the temperature equation takes the form of
(7.2). Clearly, there are spatially homogeneous solutions with constant den-
sity and velocity and temperature of the type %o(t)=Ct&2. Due to scaling
arguments, without loss of generality, we may choose the solution \o=1,
uo=0 and %o(t)=((*�2) t)&2 as the solution to be perturbed. Therefore,
setting

\=\o+\~ , u=uo+u~ , %=%o+%�

linearizing the system (7.1) around this state and dropping the tildes, we
obtain the following linear system for (\, u, %)

�\
�t

+div u=0

�u
�t

+{%+%o(t) {\=0

�%
�t

+
2
3

%o(t) div u+* _\%3�2
o +

3
2

%%o(t)1�2&=0

Therefore, looking for solutions which are long wave perturbations of
the homogeneous one, we search for solutions of the form

\=\(t) exp(i(k } x)), u=u(t) exp(i(k } x)), %=%(t) exp(i(k } x))

Thus, (\, u, %) must satisfy the system of ODE's given by

�\
�t

+i(k } u)=0

�u
�t

+ik(%+%o(t) \)=0 (8.1)

�%
�t

+
2
3

i(k } u) %o(t)+*%1�2
o _\%o+

3
2

%&=0

Finally, we look for explicit solutions of (8.1) of the form

\(t)=\1 t#, u(t)=u1 t#&1, %(t)=%1 t#&2
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with constant (\1 , u1 , %1). A simple computation shows that this is a solu-
tion if the following linear algebraic equations are satisfied,

#\1+i(k } u1)=0

(#&1) u1+ik \%1+
4
*2 \1+=0

(#&2) %1+
8

3*2 i(k } u1)+
8
*2 \1+3%1=0

This system has non-trivial solutions provided its determinant is zero, i.e.,

#[(#&1)(#&2+a)+b |k|2]+c |k|2 [(#&2+a)&d ]=0

with some constants a, b, c, d. Searching for roots of the polynomial in # as
a functions of k and * we find that for |k| small (small long wave perturba-
tions) there is a root close to 1. Precisely, there exists #=1+O( |k|2) root
of this polynomial. Therefore, we have found a solution of the system (8.1)
that diverges as t � �, so the system is unstable with respect to small long
wave perturbations. The instability was mentioned in ref. 8 without proof.

8.2. Non-Constant Restitution Coefficient

Here, we consider only the case in which the restitution coefficient is
e(%)=1&c - % for small temperature. Then, the stability analysis is per-
formed for the system (7.3) with G(\)=1 in terms of density, velocity and
pressure.

After the rescaling given by t=(2�c) t~ and x=(2�c) x~ , system (7.3)
reduces to the case c=2. Omitting the tildes and denoting by

�(t, x)=
1

p(t, x)

system (7.3) becomes

�\
�t

+div(\u)=0

\
�u
�t

+\(u } {) u+={
1
�

=0

��
�t

+(u } {) �&
5
3

� div u=1
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Now, considering small perturbations of the equilibrium solutions

\=1+\~ , u=u~ , �=t+��

and assuming for brevity that the space dependence of the perturbation is
only on the first component of x and u, that we denote the same for sim-
plicity, omitting the tildes yields the linear system

\t+ux=0

ut&
=
t2 �x=0 (8.2)

�t&
5
3

tux=0

From the last two equations we have

3
5

(t&1�t)t=uxt=
=
t2 �xx (8.3)

Next, we search for solutions of (8.3) of the form

�(t, x)=y(t) exp(i(k } x))

then, y(t) must satisfy the equation

3
5

(t&1yt)t=&
=
t2 k2y

or equivalently,

ty"& y$=&5
3 =k2y (8.4)

A long time asymptotics is given by the function y�=exp(: - t ), where :
is found by plugging into (8.4) and matching it, obtaining

:2

4
=&

5
3

=k2

Therefore, the linear waves solutions of system (8.3) are asymptotically
given by

�(t, x)=exp(ik(x&2!o - =t ))
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where !o=- 5�3 on the background of the spatially homogeneous solu-
tion, that is, substituting � in (8.2) and solving for \ and u. Thus, in this
case we obtain linear stability of the homogeneous solutions which is
another difference with respect to the constant case.

Finally, we remark that the asymptotic phase velocity of the waves is
given by

C(t)=2!o
d
dt

- =t =�5
3

=
t

=�5
3

%o(t)

and coincides with the time dependent speed of sound in the usual Euler
gas.
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